Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A Cloud Framework for High Spatial Resolution Soil Moisture Mapping from Radar and Optical Satellite Imageries
Ist Teil von
Chinese geographical science, 2023-08, Vol.33 (4), p.649-663
Ort / Verlag
Heidelberg: Science Press
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Soil moisture plays an important role in crop yield estimation, irrigation management, etc. Remote sensing technology has potential for large-scale and high spatial soil moisture mapping. However, offline remote sensing data processing is time-consuming and resource-intensive, and significantly hampers the efficiency and timeliness of soil moisture mapping. Due to the high-speed computing capabilities of remote sensing cloud platforms, a High Spatial Resolution Soil Moisture Estimation Framework (HSRSMEF) based on the Google Earth Engine (GEE) platform was developed in this study. The functions of the HSRSMEF include research area and input datasets customization, radar speckle noise filtering, optical-radar image spatio-temporal matching, soil moisture retrieving, soil moisture visualization and exporting. This paper tested the performance of HSRSMEF by combining Sentinel-1, Sentinel-2 images and in-situ soil moisture data in the central farmland area of Jilin Province, China. Reconstructed Normalized Difference Vegetation Index (NDVI) based on the Savitzky-Golay algorithm conforms to the crop growth cycle, and its correlation with the original NDVI is about 0.99 (
P
< 0.001). The soil moisture accuracy of the random forest model (
R
2
= 0.942,
RMSE
= 0.013 m
3
/m
3
) is better than that of the water cloud model (
R
2
= 0.334,
RMSE
= 0.091 m
3
/m
3
). HSRSMEF transfers time -consuming offline operations to cloud computing platforms, achieving rapid and simplified high spatial resolution soil moisture mapping.