Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 19431
IEEE transactions on vehicular technology, 2023-07, Vol.72 (7), p.8424-8432
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Novel Parameter Estimation Method for PMSM by Using Chaotic Particle Swarm Optimization With Dynamic Self-Optimization
Ist Teil von
  • IEEE transactions on vehicular technology, 2023-07, Vol.72 (7), p.8424-8432
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2023
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • In this study, a novel parameter estimation method for permanent magnet synchronous motor (PMSM) of chaotic particle swarm optimization with dynamic self-optimization (DSCPSO) is proposed, where the voltage source inverter (VSI) nonlinearity is estimated simultaneously with the parameters to achieve real-time compensation of VSI nonlinearity. In DSCPSO, the tent chaos theory is introduced into the updating of particle swarm algorithm (PSO) populations, inertia weights and learning factors to enhance its ability to explore potentially better regions. Moreover, a memory tempering annealing (MTA) strategy is employed to guarantee particle pluralistic learning, which combines the superior robustness of the simulated annealing algorithm (SA) while enhancing population diversity. Furthermore, to achieve a reasonable tradeoff between exploration and exploitation, a dynamic lens imaging opposition-based learning (DLIOBL) and domain optimization strategy based on evolutionary information is designed, i.e., DLIOBL in the pre-evolutionary stage guarantees the depth of the exploration learning, while the domain optimization strategy is performed in the post-evolutionary stage accelerates the exploitation operation and avoids the problem of slow convergence in the late stages of PSO. The proposed method is applied to the parameter estimation of PMSM and the experimental results show that, the proposed method can track the VSI nonlinearity and variable parameter better than the conventional method under different working conditions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX