Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 144

Details

Autor(en) / Beteiligte
Titel
A Cross-Domain Generative Data Augmentation Framework for Aspect-Based Sentiment Analysis
Ist Teil von
  • Electronics (Basel), 2023-07, Vol.12 (13), p.2949
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Aspect-based sentiment analysis (ABSA) is a crucial fine-grained sentiment analysis task that aims to determine sentiment polarity in a specific aspect term. Recent research has advanced prediction accuracy by pre-training models on ABSA tasks. However, due to the lack of fine-grained data, those models cannot be trained effectively. In this paper, we propose the cross-domain generative data augmentation framework (CDGDA) that utilizes a generation model to produce in-domain, fine-grained sentences by learning from similar, coarse-grained datasets out-of-domain. To generate fine-grained sentences, we guide the generation model using two prompt methods: the aspect replacement and the aspect–sentiment pair replacement. We also refine the quality of generated sentences by an entropy minimization filter. Experimental results on three public datasets show that our framework outperforms most baseline methods and other data augmentation methods, thereby demonstrating its efficacy.
Sprache
Englisch
Identifikatoren
ISSN: 2079-9292
eISSN: 2079-9292
DOI: 10.3390/electronics12132949
Titel-ID: cdi_proquest_journals_2836313206

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX