Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE internet of things journal, 2023-07, Vol.10 (13), p.11792-11803
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Positioning and Contour Extraction of Autonomous Vehicles Based on Enhanced DOA Estimation by Large-Scale Arrays
Ist Teil von
  • IEEE internet of things journal, 2023-07, Vol.10 (13), p.11792-11803
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • As an important branch of Internet of Vehicles (IoV) systems, autonomous vehicle (AV) positioning based on direction-of-arrival (DOA) estimation has received extensive attention in recent years. In this article, an AV positioning method under unknown mutual coupling is proposed within the framework of a large-dimensional asymptotic theory (LAT). First, enhanced and closed-form DOA estimation is achieved by jointly exploiting large-scale uniform linear arrays (ULAs), Toeplitz rectification and the phase transformation result associated with the sample covariance matrix; second, a more reliable subset/set of DOAs is constructed according to the signal-to-noise at receivers; finally, robust AV positioning is achieved with the reliable subset/set. Motivated by satisfactory DOA estimation performance, an AV contour extraction scheme is developed with the aid of two antennas installed on an AV. The proposed method shows several salient advantages compared with existing methods, including improved resolution and accuracy, reduced computational complexity, robustness to mutual coupling and unreasonable DOA estimates, as well as the ability to effectively extract AV contour information.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX