Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 4777
Management science, 2023-04, Vol.69 (4), p.2474-2496
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Casino Gambling Model Under Cumulative Prospect Theory: Analysis and Algorithm
Ist Teil von
  • Management science, 2023-04, Vol.69 (4), p.2474-2496
Ort / Verlag
Linthicum: INFORMS
Erscheinungsjahr
2023
Quelle
INFORMS PubsOnLine
Beschreibungen/Notizen
  • We develop an approach to solve the Barberis casino gambling model [Barberis N (2012) A model of casino gambling. Management Sci. 58(1):35–51] in which a gambler whose preferences are specified by the cumulative prospect theory (CPT) must decide when to stop gambling by a prescribed deadline. We assume that the gambler can assist their decision using independent randomization. The problem is inherently time inconsistent because of the probability weighting in CPT, and we study both precommitted and naïve stopping strategies. We turn the original problem into a computationally tractable mathematical program from which we devise an algorithm to compute optimal precommitted rules that are randomized and Markovian. The analytical treatment enables us to confirm the economic insights of Barberis for much longer time horizons and to make additional predictions regarding a gambler’s behavior, including that, with randomization, a gambler may enter the casino even when allowed to play only once and that it is prevalent that a naïf never stops loss. This paper was accepted by Kay Giesecke, finance. Funding: The first author acknowledges support from National Natural Science Foundation of China [Grant 11901494] and Natural Science Foundation of Guangdong Province [Grant 2019A1515011396]. The second author gratefully acknowledges support from the European Union’s Seventh Framework Programme/European Research Council [ERC Starting Grant R obust F in M ath 335421]. The third author gratefully acknowledges financial support through start-up grants at both the University of Oxford and Columbia University, as well as through the Oxford–Nie Laboratory for Financial Big Data and the Nie Center for Intelligent Asset Management. Supplemental Material: Data are available at https://doi.org/10.1287/mnsc.2022.4414 .
Sprache
Englisch
Identifikatoren
ISSN: 0025-1909
eISSN: 1526-5501
DOI: 10.1287/mnsc.2022.4414
Titel-ID: cdi_proquest_journals_2806560761

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX