Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Dense Nested Attention Network for Infrared Small Target Detection
Ist Teil von
IEEE transactions on image processing, 2023, Vol.32, p.1745-1758
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2023
Quelle
IEEE
Beschreibungen/Notizen
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied to infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNA-Net) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repetitive interaction in DNIM, the information of infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multi-level features. With our DNA-Net, contextual information of small targets can be well incorporated and fully exploited by repetitive fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection (<inline-formula> <tex-math notation="LaTeX">{P}_{d} </tex-math></inline-formula>), false-alarm rate (<inline-formula> <tex-math notation="LaTeX">{F}_{a} </tex-math></inline-formula>), and intersection of union (<inline-formula> <tex-math notation="LaTeX">IoU </tex-math></inline-formula>).