Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 23
Bulletin of the Australian Mathematical Society, 2014-08, Vol.90 (1), p.47-56
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
ELLIPTIC CURVES ARISING FROM BRAHMAGUPTA QUADRILATERALS
Ist Teil von
  • Bulletin of the Australian Mathematical Society, 2014-08, Vol.90 (1), p.47-56
Ort / Verlag
Cambridge, UK: Cambridge University Press
Erscheinungsjahr
2014
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • A Brahmagupta quadrilateral is a cyclic quadrilateral whose sides, diagonals and area are all integer values. In this article, we characterise the notions of Brahmagupta, introduced by K. R. S. Sastry [‘Brahmagupta quadrilaterals’, Forum Geom. 2 (2002), 167–173], by means of elliptic curves. Motivated by these characterisations, we use Brahmagupta quadrilaterals to construct infinite families of elliptic curves with torsion group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$ having ranks (at least) four, five and six. Furthermore, by specialising we give examples from these families of specific curves with rank nine.
Sprache
Englisch
Identifikatoren
ISSN: 0004-9727
eISSN: 1755-1633
DOI: 10.1017/S0004972713001172
Titel-ID: cdi_proquest_journals_2786975125
Format
Schlagworte
Curves, Quadrilaterals

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX