Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 129
Fatigue & fracture of engineering materials & structures, 2023-04, Vol.46 (4), p.1426-1442
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Nonlocal analysis of edge‐cracked nanobeams under Mode I and Mixed‐Mode (I + II) static loading
Ist Teil von
  • Fatigue & fracture of engineering materials & structures, 2023-04, Vol.46 (4), p.1426-1442
Ort / Verlag
Oxford: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • In the present paper, the behavior of an edge‐cracked nanobeam under both Mode I and Mixed‐Mode (I + II) static bending loading is analyzed by using the stress‐driven nonlocal model (SDM), being the SDM applied for the first time in the case of Mixed‐Mode loading. More precisely, the cracked nanobeam is modeled by using a modification of the classical cracked‐beam theory, consisting in dividing the beam into two beam segments connected through a massless elastic rotational spring located at the cracked cross section. The bending stiffness of the cracked cross section is computed by exploiting: the Griffith energy criterion and the conventional linear elastic fracture mechanics. Cracks under both Mode I and Mixed‐Mode (I + II) loading are considered. Finally, an edge‐cracked cantilever nanobeam subjected to a transversal point load at the free end is analyzed. The static deflection is calculated and discussed for different values of relative crack depth, crack location, and crack orientation. HIGHLIGHTS Edge‐cracked nanobeam under both Mode I and Mixed‐Mode (I + II) static loading is analyzed. Stress‐driven nonlocal model is applied for the first time in case of Mixed‐Mode loading. Griffith criterion and LEFM are used to compute cracked cross section bending stiffness. A parametric study of an edge‐cracked cantilever nanobeam under point load is performed.
Sprache
Englisch
Identifikatoren
ISSN: 8756-758X
eISSN: 1460-2695
DOI: 10.1111/ffe.13936
Titel-ID: cdi_proquest_journals_2786269264

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX