Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 464217
Nonlinear dynamics, 2023-04, Vol.111 (7), p.6335-6347
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Active fault-tolerant control of cable-driven parallel robots
Ist Teil von
  • Nonlinear dynamics, 2023-04, Vol.111 (7), p.6335-6347
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2023
Quelle
SpringerLink
Beschreibungen/Notizen
  • Cable-driven parallel robots (CDPRs) are a class of parallel robots where the cables are used as the arms of the robot in a redundant kinematic architecture. Such an architecture allows manipulation in a considerably large working area and also operation at high speed and acceleration. However, as cables only support tensile force, the controller should generate positive control effort, which leads to a complex constrained control problem. The positive tension distribution in redundant CDPR is generally maintained via redundancy resolution (RR) methods, which are originally optimization-based. The RR methods are prone to kinematic uncertainty, which brings complexity to the control apart from the original effects of kinematic uncertainty. The constrained control of CDPRs gets more complex in the faulty mode of the actuators. The combined effects of faulty actuators along with the kinematic uncertainty limit the application of RR in practice. To address this, a robust fault-tolerant constrained control scheme is proposed to generate an unidirectional control signal for maintaining positive tension in cables in the presence of actuator fault and model uncertainties, taking advantage of an adaptive finite-time sliding mode control along with a nonlinear adaptive observer. The proposed observer estimates the model uncertainties and the actuator fault, while the controller ensures the convergence of the state variables and compensates for the observer estimation error. The H ∞ asymptotic stability of the proposed observer is ensured through sufficient conditions using linear matrix inequality. Furthermore, Lyapunov’s second method is employed to prove the finite-time stability of the system. The performance of the proposed scheme is experimentally validated using a planar CDPR in the presence of actuator fault and model uncertainties.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX