Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Carpet Beater Molecules: Synthesis and Characterization of Functional Hexa‐peri‐benzocoronene–Alkyne Coupling Products
Ist Teil von
European journal of organic chemistry, 2023-03, Vol.26 (9), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Within the scope of this paper, nine π‐expanded mono‐substituted 5,8,11,14,17‐pentakis‐(tert‐butyl)‐hexa‐peri‐hexabenzocoronenes (HBC) are introduced. 2‐Iodo‐5,8,11,14,17‐pentakis‐(tert‐butyl)‐hexa‐peri‐hexabenzocoronene served as precursor and was reacted with ethynyltrimethylsilane in a Sonogashira coupling reaction. The acetylene unit is used as a linker and can undergo another Sonogashira coupling reaction combining different phenyl coupling partners with the HBC core. The electron‐withdrawing groups such as nitrile, pyridine and carbonyl species (aldehyde, methylester, carboxylic acid) as well as the three quinoxaline based species (diphenylquinoxaline, dibenzo[a,c]phenazine, phenanthro[4’,5’‐a,b,c]phenazine) serve as substitution moieties. Their influence on the optoelectronic properties were investigated by UV/Vis absorption spectroscopy demonstrating a maximum redshift of 7 nm compared to starting compound 2‐Iodo‐5,8,11,14,17‐pentakis‐(tert‐butyl) HBC. As for the phenanthro[4’,5’‐a,b,c]phenazine substituted HBC a dramatic decrease in the intensity of the absorption of the UV/Vis spectrum was observed. The fluorescence spectroscopy pointed out that the dibenzo[a,c]phenazine and phenanthro[4’,5’‐a,b,c]phenazine substitution changed the spectra to one broad peak departing from the characteristic HBC‐like emission pattern.
A library of nine HBC‐alkyne hybrids with enlarged π‐systems is presented. The iodide HBC served as a very suitable starting material for double Sonogashira reactions with several phenyl‐ or quinoxaline‐based coupling partners. Spectroscopic analyses were performed and discussed as the varied substitution pattern changed the optoelectronic properties.