Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
In his Ph.D. thesis, Michal Szabados conjectured that for a not fully periodic configuration with a minimal periodic decomposition the nonexpansive lines are exactly the lines that contain a period for some periodic configuration in such decomposition. In this paper, we study Szabados’s conjecture. First, we show that we may consider a minimal periodic decomposition where each periodic configuration is defined on a finite alphabet. Then we prove that Szabados’s conjecture holds for a wide class of configurations, which includes all not fully periodic configurations with low convex pattern complexity.