Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Synthesis and characterization of PES/PSF/PEG by immersion precipitation for Mediterranean seawater desalination by FO membrane
Ist Teil von
Polymer engineering and science, 2023-02, Vol.63 (2), p.509-520
Ort / Verlag
Hoboken, USA: John Wiley & Sons, Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m−2 h−1) and lower reverse salt flux (1.94 g m−2 h−1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven‐cellulose triacetate (NW‐CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m−2 h−1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.
The addition of PEG causes a more noticeable modification in PES/PSF dope solution. Adding PEG enhanced the blend membranes' hydrophilicity and porosity. Presence of PEG in PES/PSF dope enhances dope rheology and fast phase separation. The structure parameter was revealed to be key characteristics for water flux. The performance results of the PEG blended membrane indicated significantly higher permeate flux than the pristine PES/PSF. High membrane selectivity of PEG1 (0.021 g l−1) membrane was improved.