Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Optimal dichotomy of temporal scales and boundedness/stability of time-varying multidimensional nonlinear systems
Ist Teil von
Mathematics of control, signals, and systems, 2023-03, Vol.35 (1), p.125-158
Ort / Verlag
London: Springer London
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
This paper develops a new approach to the estimation of the degree of boundedness/stability of multidimensional nonlinear systems with time-dependent nonperiodic coefficients—an essential task in various engineering and natural science applications. Known approaches to assessing the stability of such systems rest on the utility of Lyapunov functions and Lyapunov first approximation methodologies that typically provide conservative and computationally elaborate criteria for multidimensional systems of this category. Adequate criteria of boundedness of solutions to nonhomogeneous systems of this kind are rare in contemporary literature. Lately, we develop a new approach to these problems which rests on bounding the evolution of the norms of solutions to initial systems by matching solutions of a scalar auxiliary equation we introduced in Pinsky and Koblik (Math Probl Eng 2020), Pinsky (J Nonlinear Dyn 103:517–539, 2021, Stability and boundedness of solutions to some multidimensional nonautonomous nonlinear systems, 2022). Still, the technique advanced in Pinsky (Math. Problems in Eng, 2022:5098677,
https://doi.org/10.1155/2022/5098677
) rests on the assumption that the average of the linear components of the underlying system is defined by a stable matrix of general position. The current paper substantially amplifies the application domain of this approach. It is merely assumed that the time-dependent linear block of the underlying system can be split into slow- and fast-varying components by application of any smoothing technique. This dichotomy of temporal scales is determined by the optimal criterion reducing the conservatism of our estimates. In turn, we transform the linear subsystem with a slow-varying matrix in a diagonally dominant form by successive applications of the Lyapunov transforms. This prompts the development of novel scalar auxiliary equations embracing the estimation of the norms of solutions to our initial systems. Next, we formulate boundedness/stability criteria and estimate the relevant regions of the underlying systems using analytical and abridged numerical reasoning. Lastly, we authenticate the developed methodology in inclusive simulations.