Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 278
Machine learning: science and technology, 2023-03, Vol.4 (1), p.15008
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fast regression of the tritium breeding ratio in fusion reactors
Ist Teil von
  • Machine learning: science and technology, 2023-03, Vol.4 (1), p.15008
Ort / Verlag
Bristol: IOP Publishing
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Abstract The tritium breeding ratio (TBR) is an essential quantity for the design of modern and next-generation D-T fueled nuclear fusion reactors. Representing the ratio between tritium fuel generated in breeding blankets and fuel consumed during reactor runtime, the TBR depends on reactor geometry and material properties in a complex manner. In this work, we explored the training of surrogate models to produce a cheap but high-quality approximation for a Monte Carlo (MC) TBR model in use at the UK Atomic Energy Authority. We investigated possibilities for dimensional reduction of its feature space, reviewed 9 families of surrogate models for potential applicability, and performed hyperparameter optimization. Here we present the performance and scaling properties of these models, the fastest of which, an artificial neural network, demonstrated R 2 = 0.985 and a mean prediction time of 0.898   μ s , representing a relative speedup of 8 × 10 6 with respect to the expensive MC model. We further present a novel adaptive sampling algorithm, Quality-Adaptive Surrogate Sampling, capable of interfacing with any of the individually studied surrogates. Our preliminary testing on a toy TBR theory has demonstrated the efficacy of this algorithm for accelerating the surrogate modelling process.
Sprache
Englisch
Identifikatoren
ISSN: 2632-2153
eISSN: 2632-2153
DOI: 10.1088/2632-2153/acb2b3
Titel-ID: cdi_proquest_journals_2771389093

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX