Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 43
Journal of chemical information and modeling, 2023-01, Vol.63 (1), p.111-125
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches
Ist Teil von
  • Journal of chemical information and modeling, 2023-01, Vol.63 (1), p.111-125
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Hematotoxicity has been becoming a serious but overlooked toxicity in drug discovery. However, only a few in silico models have been reported for the prediction of hematotoxicity. In this study, we constructed a high-quality dataset comprising 759 hematotoxic compounds and 1623 nonhematotoxic compounds and then established a series of classification models based on a combination of seven machine learning (ML) algorithms and nine molecular representations. The results based on two data partitioning strategies and applicability domain (AD) analysis illustrate that the best prediction model based on Attentive FP yielded a balanced accuracy (BA) of 72.6%, an area under the receiver operating characteristic curve (AUC) value of 76.8% for the validation set, and a BA of 69.2%, an AUC of 75.9% for the test set. In addition, compared with existing filtering rules and models, our model achieved the highest BA value of 67.5% for the external validation set. Additionally, the shapley additive explanation (SHAP) and atom heatmap approaches were utilized to discover the important features and structural fragments related to hematotoxicity, which could offer helpful tips to detect undesired positive substances. Furthermore, matched molecular pair analysis (MMPA) and representative substructure derivation technique were employed to further characterize and investigate the transformation principles and distinctive structural features of hematotoxic chemicals. We believe that the novel graph-based deep learning algorithms and insightful interpretation presented in this study can be used as a trustworthy and effective tool to assess hematotoxicity in the development of new drugs.
Sprache
Englisch
Identifikatoren
ISSN: 1549-9596
eISSN: 1549-960X
DOI: 10.1021/acs.jcim.2c01088
Titel-ID: cdi_proquest_journals_2765100114

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX