Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 35569

Details

Autor(en) / Beteiligte
Titel
Tailored Organic Cathode Material with Multi‐Active Site and Compatible Groups for Stable Quasi‐Solid‐State Lithium‐Organic Batteries
Ist Teil von
  • Advanced functional materials, 2022-12, Vol.32 (49), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Quasi‐solid‐state lithium‐organic batteries have attracted widespread attention in view of their high safety, good mechanical strength, compromise ionic conductivity, and environmental friendliness. However, most organic electrode materials suffer from the undesirable interfacial compatibility, thus causing poor cycling stability. Herein, a quinone‐fused aza‐phenazine (THQAP) is reported with multi‐active site and compatible groups as the cathode material for constructing poly(vinylidene fluoride hexafluoro propylene) (PVDF‐HFP)‐based quasi‐solid‐state lithium‐organic batteries. Benefitting from the high compatibility between cathode material (THQAP) and gel polymer electrolytes (PVDF‐HFP), the dissolution and shuttle reaction of THQAP with hydroxyl groups are suppressed compared with its counterparts (QAP) without hydroxyl groups. As a result, THQAP in quasi‐solid‐state lithium‐organic batteries not only delivers excellent reversible capacity of 240 mAh g−1 at 50 mA g−1, but also exhibits stable cyclability with capacity retention of 78% (160 mAh g−1) after 200 cycles at 200 mA g−1. This study offers a promising strategy to develop quasi‐solid‐state lithium‐organic batteries with higher capacity and cycling stability. The quinone‐fused aza‐phenazines with multi‐active site and compatible groups are synthesized and used as the cathode materials to construct poly(vinylidene fluoride hexafluoro propylene) (PVDF‐HFP)‐based quasi‐solid‐state lithiumorganic batteries. Experimental analyses and theory calculations demonstrate the existence of the compatibility and strong interaction between the electrode/electrolyte interfaces, which leads to the improved cycling stability and rate performance.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX