Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 593

Details

Autor(en) / Beteiligte
Titel
From vibrational spectroscopy and quantum tunnelling to periodic band structures - a self-supervised, all-purpose neural network approach to general quantum problems
Ist Teil von
  • Physical chemistry chemical physics : PCCP, 2022-10, Vol.24 (41), p.25191-2522
Ort / Verlag
Cambridge: Royal Society of Chemistry
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In this work, a feed-forward artificial neural network (FF-ANN) design capable of locating eigensolutions to Schrödinger's equation via self-supervised learning is outlined. Based on the input potential determining the nature of the quantum problem, the presented FF-ANN strategy identifies valid solutions solely by minimizing Schrödinger's equation encoded in a suitably designed global loss function. In addition to benchmark calculations of prototype systems with known analytical solutions, the outlined methodology was also applied to experimentally accessible quantum systems, such as the vibrational states of molecular hydrogen H 2 and its isotopologues HD and D 2 as well as the torsional tunnel splitting in the phenol molecule. It is shown that in conjunction with the use of SIREN activation functions a high accuracy in the energy eigenvalues and wavefunctions is achieved without the requirement to adjust the implementation to the vastly different range of input potentials, thereby even considering problems under periodic boundary conditions. A general, feedforward neural network strategy for the treatment of a broad range of quantum problems including rotational and vibrational spectroscopy, tunnelling and band structure calculations is presented in this study.
Sprache
Englisch
Identifikatoren
ISSN: 1463-9076
eISSN: 1463-9084
DOI: 10.1039/d2cp03921d
Titel-ID: cdi_proquest_journals_2729341601

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX