Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 68
Forum of mathematics. Sigma, 2022-01, Vol.10, Article e94
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Cohomology of algebraic varieties over non-archimedean fields
Ist Teil von
  • Forum of mathematics. Sigma, 2022-01, Vol.10, Article e94
Ort / Verlag
Cambridge, UK: Cambridge University Press
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group $\Gamma _{\infty }$ , where $\Gamma $ denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of $\Gamma _{\infty }$ . In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
Sprache
Englisch
Identifikatoren
ISSN: 2050-5094
eISSN: 2050-5094
DOI: 10.1017/fms.2022.84
Titel-ID: cdi_proquest_journals_2726831777

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX