Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 66
Electronics (Basel), 2022-09, Vol.11 (17), p.2663
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Deep-Learning Based Method for Analysis of Students’ Attention in Offline Class
Ist Teil von
  • Electronics (Basel), 2022-09, Vol.11 (17), p.2663
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Students’ actual learning engagement in class, which we call learning attention, is a major indicator used to measure learning outcomes. Obtaining and analyzing students’ attention accurately in offline classes is important empirical research that can improve teachers’ teaching methods. This paper proposes a method to obtain and measure students’ attention in class by applying a variety of deep-learning models and initiatively divides a whole class into a series of time durations, which are categorized into four states: lecturing, interaction, practice, and transcription. After video and audio information is taken with Internet of Things (IoT) technology in class, Retinaface and the Vision Transformer (ViT) model is used to detect faces and extract students’ head-pose parameters. Automatic speech recognition (ASR) models are used to divide a class into a series of four states. Combining the class-state sequence and each student’s head-pose parameters, the learning attention of each student can be accurately calculated. Finally, individual and statistical learning attention analyses are conducted that can help teachers to improve their teaching methods. This method shows potential application value and can be deployed in schools and applied in different smart education programs.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX