Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 8138

Details

Autor(en) / Beteiligte
Titel
Bioinspired 3D Printing of Functional Materials by Harnessing Enzyme‐Induced Biomineralization
Ist Teil von
  • Advanced functional materials, 2022-08, Vol.32 (34), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Nature builds structurally ordered and environmentally adaptive composite materials by harnessing biologically catalyzed mineralization under mild conditions. Despite recent advancements in engineering conventional materials with microorganisms through biomimetic mineralization, it remains difficult to produce mineralized composites that integrate the hierarchical structure and living attributes of their natural counterparts. Here, a kind of functional material is developed by integrating 3D printed hydrogel architectures with enzyme‐induced biomineralization. It is shown that the enzyme‐induced mineralization intensely transforms flexible and soft hydrogels (modulus of 125 kPa) to rigid (150 MPa) and highly mineralized hydrogel composites. Coupling with embedded 3D printing, sophisticated and mineralized free‐form architectures are fabricated in the absence of sacrificial inks, which were previously unattainable through conventional manufacturing strategies. Moreover, by exploiting multi‐material 3D printing to tailor the construct composition, exquisite control over the mineral distribution within the hydrogel constructs can be achieved, thus composite materials with tessellated architectures and unconventional mechanics could be obtained. The study provides a viable means to fabricate composite materials with high‐fidelity architectures and tailored mechanical properties, unlocking paths to the next generation of functional materials and structures by integrating 3D printing with biomineralization. Functional materials with sophisticated architectures and tailored mechanical properties are fabricated through the integration of direct ink writing 3D printing technology and in situ enzyme‐induced mineralization.
Sprache
Englisch
Identifikatoren
ISSN: 1616-301X
eISSN: 1616-3028
DOI: 10.1002/adfm.202113262
Titel-ID: cdi_proquest_journals_2704166842

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX