Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 3

Details

Autor(en) / Beteiligte
Titel
Image Recognition for Garbage Classification Based on Transfer Learning and Model Fusion
Ist Teil von
  • Mathematical problems in engineering, 2022-08, Vol.2022, p.1-12
Ort / Verlag
New York: Hindawi
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Garbage is an underutilized resource, and garbage classification is one of the effective ways to make full use of these resources. In order to realize the automation of garbage classification, some deep learning models are used for garbage images recognition. A novel garbage image recognition model Garbage Classification Net (GCNet) based on transfer learning and model fusion is proposed in this paper. After extracting garbage image features, EfficientNetv2, Vision Transformer, and DenseNet, respectively, are combined to construct the neural network model of GCNet. Data augmentation is used to expand the dataset and 41,650 garbage images are contained in the new dataset. Compared with other models through experiments, the results show that the proposed model has good convergence, high recall rate and accuracy, and short recognition time.
Sprache
Englisch
Identifikatoren
ISSN: 1024-123X
eISSN: 1563-5147
DOI: 10.1155/2022/4793555
Titel-ID: cdi_proquest_journals_2701962827

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX