Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 350

Details

Autor(en) / Beteiligte
Titel
Predicting the composition of W-B-C coatings sputtered from industrial cylindrical segmented target
Ist Teil von
  • Surface & coatings technology, 2022-05, Vol.438, p.128411, Article 128411
Ort / Verlag
Lausanne: Elsevier B.V
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Computational methods have been gaining more and more attention as they provide a powerful tool for increasing efficiency in the industrial use of magnetron sputtering and provide results from which experimental work benefits. This work presents an approach for the prediction of the composition and the deposition rate of the coatings. The combination of SDTrimSP and SiMTra provides a framework for the simulation of the deposition process. The chemical composition and the deposition rate of industrially sputtered W-B-C coatings were investigated. An industrial batch coater with a complex geometry was modelled. A cylindrical rotating sputter source was mounted with a segmented target composed of W, B4C, and C segments. The simulated chemical composition and the relative deposition rate were verified and validated by experiments. A correlation between the chemical composition and target segment placement is presented, and the influence of substrate movement on the chemical composition is discussed. A single-axis rotation of the substrate placed on an industrial carousel causes a lowering of the content of tungsten in the coatings in comparison to statically placed substrates in front of the sputter source. The simulations uncover the distinct trajectories of the heavy and light particles. The different transport of particles from target to substrate results in the observed shift of chemical composition and also explains the inherent nanolayering of the non-reactively deposited coatings in the industrial batch coater. •Combining SDTrimSP and SiMTra represents a tool for predicting industrial depositions.•Validating the model is a crucial part of predicting the deposition process.•The coating composition and relative deposition rate is predicted with high precision.•Employing the substrate rotation shifts the chemical composition of coatings.•The transport of the heavy and light particles from target to substrate is different.
Sprache
Englisch
Identifikatoren
ISSN: 0257-8972
eISSN: 1879-3347
DOI: 10.1016/j.surfcoat.2022.128411
Titel-ID: cdi_proquest_journals_2701140948

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX