Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 316

Details

Autor(en) / Beteiligte
Titel
The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure
Ist Teil von
  • Angewandte Chemie, 2022-08, Vol.134 (32), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp3 carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis‐polyacetylene chains. The distance between these sp2 carbon atoms renders the phase metallic, and yields two well‐nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of the sp2 carbons being key contributors to the electron–phonon coupling. The sp3 carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on‐surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying the sp2 versus sp3 carbon content, and by doping. DAC‐carbon: A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. The superhard sp3 carbon framework serves as a microscopic diamond anvil cell, in which the sp2 chains are compressed to establish metallicity and superconductivity.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX