Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Symmetry-Resolved Entanglement Entropy in Critical Free-Fermion Chains
Ist Teil von
Journal of statistical physics, 2022-09, Vol.188 (3), Article 28
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2022
Quelle
SpringerNature Journals
Beschreibungen/Notizen
The symmetry-resolved Rényi entanglement entropy is the Rényi entanglement entropy of each symmetry sector of a density matrix
ρ
. This experimentally relevant quantity is known to have rich theoretical connections to conformal field theory (CFT). For a family of critical free-fermion chains, we present a rigorous lattice-based derivation of its scaling properties using the theory of Toeplitz determinants. We consider a class of critical quantum chains with a microscopic U(1) symmetry; each chain has a low energy description given by
N
massless Dirac fermions. For the density matrix,
ρ
A
, of subsystems of
L
neighbouring sites we calculate the leading terms in the large
L
asymptotic expansion of the symmetry-resolved Rényi entanglement entropies. This follows from a large
L
expansion of the charged moments of
ρ
A
; we derive
tr
(
e
i
α
Q
A
ρ
A
n
)
=
a
e
i
α
⟨
Q
A
⟩
(
σ
L
)
-
x
(
1
+
O
(
L
-
μ
)
)
, where
a
,
x
and
μ
are universal and
σ
depends only on the
N
Fermi momenta. We show that the exponent
x
corresponds to the expectation from CFT analysis. The error term
O
(
L
-
μ
)
is consistent with but weaker than the field theory prediction
O
(
L
-
2
μ
)
. However, using further results and conjectures for the relevant Toeplitz determinant, we find excellent agreement with the expansion over CFT operators.