Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 16
Computers and electronics in agriculture, 2022-05, Vol.196, p.106871, Article 106871
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Cattle face recognition based on a Two-Branch convolutional neural network
Ist Teil von
  • Computers and electronics in agriculture, 2022-05, Vol.196, p.106871, Article 106871
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Proposed a cattle face recognition model based on a two-branch CNN.•Constructed face image datasets of dairy cows and beef cows.•Reduced the influence of cow face posture on recognition accuracy.•The network model is small and the recognition accuracy is high. Due to changes in cattle posture and different shooting angles, some features of collected cattle face images are missing, which leads to a decline in the accuracy of cattle face recognition. This paper proposes a cattle face recognition model based on a two-branch convolutional neural network (TB-CNN). The collected two cattle face images from different angles are input to the convolutional neural network of different channels for feature extraction, the features of the two channels are feature fused, and the global average pooling layer is combined with the classifier to identify the individual cattle. The squeeze-and-excitation block (SE) is embedded in the feature extraction network in the network model to improve the network feature extraction capability. The global average pooling layer is used to replace the fully connected layer, which improves the network classification capability and reduces the number of network parameters. The experimental results show that the recognition rate of the cattle face recognition model based on the TB-CNN is 99.85% on the Simmental beef cattle face image dataset, 99.81% on the Holstein cow face image dataset, and 99.71% on the beef cattle and cow mixed dataset. The cattle face recognition model proposed in this paper has good robustness and generalization ability, which can effectively reduce the influence of cattle face angle changes on the cattle face recognition rate and improve the accuracy of cattle face recognition.
Sprache
Englisch
Identifikatoren
ISSN: 0168-1699
eISSN: 1872-7107
DOI: 10.1016/j.compag.2022.106871
Titel-ID: cdi_proquest_journals_2667854248

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX