Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 39

Details

Autor(en) / Beteiligte
Titel
Neuron Circuit Failure and Pattern Learning in Electronic Spiking Neural Networks
Ist Teil von
  • Electronics (Basel), 2022-05, Vol.11 (9), p.1392
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Biological neural networks demonstrate remarkable resilience and the ability to compensate for neuron losses over time. Thus, the effects of neural/synaptic losses in the brain go mostly unnoticed until the loss becomes profound. This study analyses the capacity of electronic spiking networks to compensate for the sudden, random neuron failure (“death”) due to reliability degradation or other external factors such as exposure to ionizing radiation. Electronic spiking neural networks with memristive synapses are designed to learn spatio-temporal patterns representing 25 or 100-pixel characters. The change in the pattern learning ability of the neural networks is observed as the afferents (input layer neurons) in the network fail/die during network training. Spike-timing-dependent plasticity (STDP) learning behavior is implemented using shaped action potentials with a realistic, non-linear memristor model. This work focuses on three cases: (1) when only neurons participating in the pattern are affected, (2) when non-participating neurons (those that never present spatio-temporal patterns) are disabled, and (3) when random/non-selective neuron death occurs in the network (the most realistic scenario). Case 3 is further analyzed to compare what happens when neuron death occurs over time versus when multiple afferents fail simultaneously. Simulation results emphasize the importance of non-participating neurons during the learning process, concluding that non-participating afferents contribute to improving the learning ability and stability of the neural network. Instantaneous neuron death proves to be more detrimental for the network compared to when afferents fail over time. To a surprising degree, the electronic spiking neural networks can sometimes retain their pattern recognition capability even in the case of significant neuron death.
Sprache
Englisch
Identifikatoren
ISSN: 2079-9292
eISSN: 2079-9292
DOI: 10.3390/electronics11091392
Titel-ID: cdi_proquest_journals_2662901505

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX