Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
The CAMELS Multifield Data Set: Learning the Universe’s Fundamental Parameters with Artificial Intelligence
Ist Teil von
  • The Astrophysical journal. Supplement series, 2022-04, Vol.259 (2), p.61
Ort / Verlag
Saskatoon: The American Astronomical Society
Erscheinungsjahr
2022
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Abstract We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span ∼100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N -body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at https://camels-multifield-dataset.readthedocs.io .

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX