Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Journal of sound and vibration, 2021-10, Vol.511, p.116331, Article 116331
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Computational inference of vibratory system with incomplete modal information using parallel, interactive and adaptive Markov chains
Ist Teil von
  • Journal of sound and vibration, 2021-10, Vol.511, p.116331, Article 116331
Ort / Verlag
2230 Support: Elsevier Ltd
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •A new computational framework built upon Bayesian inference is established to conduct the probabilistic inverse analysis in the presence of uncertainties.•Multiple parallel, interactive and adaptive Markov chains are integrated in order to identify multiple local optima concurrently with improved computational efficiency.•A K-means clustering-guided generic strategy for automatic initial parameter determination is proposed to expedite the updating convergence.•Case studies demonstrate the capability of the new algorithm in finding multiple solutions including the ground truth with confidence level. Inverse analysis of vibratory system is an important subject in fault identification, model updating, and robust design and control. It is challenging subject because 1) the problem is oftentimes underdetermined while the measurements are limited and/or incomplete; 2) many combinations of parameters may yield results that are similar with respect to actual response measurements; and 3) uncertainties inevitably exist. The aim of this research is to leverage upon computational intelligence through statistical inference to facilitate an enhanced, probabilistic framework using incomplete modal response measurement. This new framework is built upon efficient inverse identification through optimization, whereas Bayesian inference is employed to account for the effect of uncertainties. To overcome the computational cost barrier, we adopt Markov chain Monte Carlo (MCMC) to characterize the target function/distribution. Instead of using single Markov chain in conventional Bayesian approach, we develop a new sampling theory with multiple parallel, interactive and adaptive Markov chains and incorporate it into Bayesian inference. This can harness the collective power of these Markov chains to realize the concurrent search of multiple local optima. The number of required Markov chains and their respective initial model parameters are automatically determined via Monte Carlo simulation-based sample pre-screening followed by K-means clustering analysis. These enhancements can effectively address the aforementioned challenges in finite element inverse analysis. The validity of this framework is systematically demonstrated through case studies.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX