Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A stability result for girth‐regular graphs with even girth
Ist Teil von
Journal of graph theory, 2022-05, Vol.100 (1), p.163-181
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Wiley Online Library Core Title
Beschreibungen/Notizen
Let
Γ denote a finite, connected, simple graph. For an edge
e of
Γ let
n
(
e
) denote the number of girth cycles containing
e. For a vertex
v of
Γ let
{
e
1
,
e
2
,
…
,
e
k
} be the set of edges incident to
v ordered such that
n
(
e
1
)
≤
n
(
e
2
)
≤
⋯
≤
n
(
e
k
). Then
(
n
(
e
1
)
,
n
(
e
2
)
,
…
,
n
(
e
k
)
) is called the signature of
v. The graph
Γ is said to be girth‐regular if all of its vertices have the same signature. Let
Γ be a girth‐regular graph with girth
g
=
2
d and signature
(
a
1
,
a
2
,
…
,
a
k
). It is known that in this case we have
a
k
≤
(
k
−
1
)
d. In this paper we show that if
a
k
=
(
k
−
1
)
d
−
ϵ for some nonnegative integer
ϵ
<
k
−
1, then
ϵ
=
0. We also show that the above bound on
ϵ is sharp by displaying examples of girth‐regular graphs with
a
k
=
(
k
−
1
)
d
−
(
k
−
1
) for some values of
k and
d (in particular, for
d
=
2), and construct geometric examples where
a
k is not far from
(
k
−
1
)
d.