Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 132
Progress in photovoltaics, 2022-04, Vol.30 (4), p.349-359
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Advanced photoluminescence imaging using non‐uniform excitation
Ist Teil von
  • Progress in photovoltaics, 2022-04, Vol.30 (4), p.349-359
Ort / Verlag
Bognor Regis: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Photoluminescence (PL) imaging is a powerful inspection technique for research laboratories and photovoltaic production lines. Common PL imaging systems have two limitations: (a) due to the non‐uniformities of the measured samples, the acquired images are affected by lateral carrier flow, resulting in inaccurate lifetime analysis and image blurring; (b) samples' non‐uniformities are measured at locally different injection levels. In this paper, we present a PL imaging system that is not affected by these effects. By adaptively adjusting the light intensity at each pixel, we achieve a uniform excess carrier density across the sample, thereby eliminating any lateral currents. The non‐uniformity of the minority carrier lifetime can then be extracted from the spatial inverse of the illumination intensity. The advantages of the proposed system are demonstrated using silicon wafers with and without a diffusion layer that contain non‐uniform defects. This approach presents a significant improvement in accuracy and sharpness compared to conventional PL imaging techniques and, therefore, is expected to be beneficial for any quantitative PL‐based analysis. Photoluminescence imaging is a powerful characterization method for photovoltaic applications, enabling spatially resolved quality inspection. Due to the uniform excitation, conventional photoluminescence images of the non‐uniform samples suffer from lateral carrier flows, resulting in image blurring, and inaccurate quantitative analysis. In this paper, we demonstrated a photoluminescence imaging system using a spatially non‐uniform excitation that is not affected by these effects. This approach presents a significant improvement in accuracy and sharpness compared to conventional photoluminescence images.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX