Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 83
Multimedia tools and applications, 2022, Vol.81 (3), p.3421-3438
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modeling and evaluating beat gestures for social robots
Ist Teil von
  • Multimedia tools and applications, 2022, Vol.81 (3), p.3421-3438
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2022
Quelle
SpringerLink
Beschreibungen/Notizen
  • Natural gestures are a desirable feature for a humanoid robot, as they are presumed to elicit a more comfortable interaction in people. With this aim in mind, we present in this paper a system to develop a natural talking gesture generation behavior. A Generative Adversarial Network (GAN) produces novel beat gestures from the data captured from recordings of human talking. The data is obtained without the need for any kind of wearable, as a motion capture system properly estimates the position of the limbs/joints involved in human expressive talking behavior. After testing in a Pepper robot, it is shown that the system is able to generate natural gestures during large talking periods without becoming repetitive. This approach is computationally more demanding than previous work, therefore a comparison is made in order to evaluate the improvements. This comparison is made by calculating some common measures about the end effectors’ trajectories (jerk and path lengths) and complemented by the Fréchet Gesture Distance (FGD) that aims to measure the fidelity of the generated gestures with respect to the provided ones. Results show that the described system is able to learn natural gestures just by observation and improves the one developed with a simpler motion capture system. The quantitative results are sustained by questionnaire based human evaluation .

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX