Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Journal of combinatorial optimization, 2022, Vol.43 (1), p.28-41
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
A set
S
of vertices in a graph
G
is a dominating set if every vertex not in
S
is adjacent to a vertex in
S
. If, in addition,
S
is an independent set, then
S
is an independent dominating set. The independent domination number
i
(
G
) of
G
is the minimum cardinality of an independent dominating set in
G
. In Goddard and Henning (Discrete Math 313:839–854, 2013) conjectured that if
G
is a connected cubic graph of order
n
, then
i
(
G
)
≤
3
8
n
, except if
G
is the complete bipartite graph
K
3
,
3
or the 5-prism
C
5
□
K
2
. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. In this paper, we provide a new family of connected cubic graphs
G
of order
n
such that
i
(
G
)
=
3
8
n
. We also show that if
G
is a subcubic graph of order
n
with no isolated vertex, then
i
(
G
)
≤
1
2
n
, and we characterize the graphs achieving equality in this bound.