Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 185
Journal of alloys and compounds, 2022-02, Vol.894, p.162404, Article 162404
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Thermodynamic destablization of SrH2 using Al for the next generation of high temperature thermal batteries
Ist Teil von
  • Journal of alloys and compounds, 2022-02, Vol.894, p.162404, Article 162404
Ort / Verlag
Lausanne: Elsevier B.V
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •The SrH2 and 2Al system was studied for thermochemical energy storage applications.•Thermodynamic destablization was observed compared to pure strontium hydride.•The system reversibly stores H2 at a temperature of 846 °C at 1 bar H2 pressure.•After 50 cycles mild degradation in H2 storage capacity was observed.•The material could be a thermal energy storage material upon further modification. [Display omitted] Thermal batteries are ideal for storing renewable energies or excess electricity from the grid. The most efficient thermal batteries utilize reversible thermochemical reactions where the heat produced during discharge drives a heat engine. Metal hydrides can be used as the thermal energy storage (TES) material in these batteries, since when heated, hydrogen is released in an endothermic process, charging the battery. When this hydrogen is reintroduced to the metal the metal hydride is reformed during the exothermic reaction (discharge). The optimal thermal battery would have a high operating temperature, low operating pressure and low material cost. SrH2 could meet these demands except its operating temperature is above 1000 °C. Adding aluminum to strontium hydride causes thermal destablization allowing an operating temperature of 1 bar hydrogen at 846 ± 36 °C, providing ideal properties as a TES material. The SrH2-2Al system reacts in two stages with the second step exhibiting only a 32% reduction in capacity over 50 cycles. Pressure-composition isotherm analysis of the second step determined the thermodynamics of H2 desorption to be ΔHdes = 132 ± 2 kJ/mol H2 and ΔSdes = 118 ± 2 J/K/mol H2. Further studies by scanning electron microscopy have determined changes in morphology over cyclic activity, while simultaneous thermal analysis and powder X-ray diffraction have identified the reaction pathways of the process. A cost analysis of the system has shown that a reduction in materials cost would enhance technological application of this material.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX