Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 1269
IEEE transactions on vehicular technology, 2021-11, Vol.70 (11), p.12209-12214
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
RFDOA-Net: An Efficient ConvNet for RF-Based DOA Estimation in UAV Surveillance Systems
Ist Teil von
  • IEEE transactions on vehicular technology, 2021-11, Vol.70 (11), p.12209-12214
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper presents a convolution neural network (CNN)-based direction of arrival (DOA) estimation method for radio frequency (RF) signals acquired by a nonuniform linear antenna array (NULA) in unmanned aerial vehicle (UAV) localization systems. The proposed deep CNN, namely RFDOA-Net, is designed with three primary processing modules, such as collective feature extraction, multi-scaling feature processing, and complexity-accuracy trade-off, to learn the multi-scale intrinsic characteristics for multi-class angle classification. In several specific modules, the regular convolutional and grouped convolutional layers are leveraged with different filter sizes to enrich diversified features and reduce network complexity besides adopting residual connection to prevent vanishing gradient. For performance evaluation, we generate a synthetic signal dataset for DOA estimation under the multipath propagation channel with the presence of additive noise, propagation attenuation and delay. In simulations, the effectiveness of RFDOA-Net is investigated comprehensively with various processing modules and antenna configurations. Compared with several state-of-the-art deep learning-based models, RFDOA-Net shows the superiority in terms of accuracy with over 94% accuracy at 5 dB signal-to-noise ratio (SNR) with cost-efficiency.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX