Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 322

Details

Autor(en) / Beteiligte
Titel
Day similarity metric model for short-term load forecasting supported by PSO and artificial neural network
Ist Teil von
  • Electrical engineering, 2021, Vol.103 (6), p.2973-2988
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This paper proposes a new model for optimal similar days selection and its use in short-term load forecasting based on artificial neural network. Proposed day similarity metric model is based on the multi-filtering process and introduces a few novelties: (1) introduction of pre-history of similar days in a selection process; (2) extension of forecasting factors: load inertia, daylight duration and load profiles; (3) open model with possibility to add additional contribution factors; (4) particle swarm optimization is applied for calculation of the impact of different contributing factors. This approach results in optimal similar days selection even in a case where it is not obvious in advance which factors are the most relevant. Finally, the artificial neural network is used as a basic procedure for the short-term load forecast. The proposed model has been tested in the transmission system utility in Serbia, and the results are presented.
Sprache
Englisch
Identifikatoren
ISSN: 0948-7921
eISSN: 1432-0487
DOI: 10.1007/s00202-021-01286-6
Titel-ID: cdi_proquest_journals_2599104339

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX