Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 151

Details

Autor(en) / Beteiligte
Titel
F1-ECAC: Enhanced Evolutionary Clustering Using an Ensemble of Supervised Classifiers
Ist Teil von
  • IEEE access, 2021, Vol.9, p.134192-134207
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2021
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Clustering is an unsupervised learning technique used in data mining for finding groups with increased object similarity within but not between them. However, the absence of a-priori knowledge on the optimal clustering criterion, and the strong bias of traditional algorithms towards clusters with a specific shape, size, or density, raise the need for more flexible solutions to find the underlying structures of the data. As a solution, clustering has been modeled as an optimization problem using meta-heuristics for generating a search space to favor groups of any desired criterion. F1- ECAC is an evolutionary clustering algorithm with an objective function designed as a supervised learning problem, which evaluates the quality of a partition in terms of its generalization degree, or its capability to train an ensemble of classifiers. This algorithm is named after its previous version, ECAC (Evolutionary Clustering Algorithm Using Supervised Classifiers), considering its main point of difference, which is the inclusion of the F1-score instead of the Area Under the Curve metric in the objective function. F1- ECAC shows a significant increase in performance and efficiency to ECAC and is highly competitive to state-of-the-art clustering algorithms. The results demonstrate F1-ECAC's benefits in usability in a wide variety of problems due to its innovative clustering criterion.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3116092
Titel-ID: cdi_proquest_journals_2579440332

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX