Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 530

Details

Autor(en) / Beteiligte
Titel
Experimental Investigation of CO2 Hydrate Dissociation in Silica Nanoparticle System with Different Thermal Conductivity
Ist Teil von
  • International journal of thermophysics, 2021-12, Vol.42 (12), Article 170
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2021
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • Nanoparticles are termed as kinetic promoters with great application potential whose promotion effect exceeding that of surfactants in some cases. However, the effects on hydrate dissociation in nanoparticle system have been studied rarely. In the presence of nanoparticles, there are differences in the heat conduction of different systems, which may cause different hydrate dissociation behaviors. Herein, the dissociation kinetics under different systems were quantitatively characterized using gas production and activity energy. It was found that silica nanoparticle promotes the CO 2 hydrate dissociation and the gas production increases with the increase of nanoparticle mass fraction. The activation energy in different silica nanoparticle systems of 50 nm 0.05–1.00 wt% increases with the decrease of nanoparticle concentration with the value changing from 72.05 ± 4.21 kJ·mol −1 to 122.25 ± 11.46 kJ·mol −1 . Compared with pure carbon dioxide hydrate, the thermal conductivity of CO 2 hydrate-silica nanoparticle systems increase by 2.4 % to 5.5 %. The thermal conductivity increases with the increase in concentration or the decrease in particle size. There is an approximately linear negative correlation between activation energy and thermal conductivity, that is, as the thermal conductivity increases, the activation energy decreases. The law of fluctuation and dissipation is the internal mechanism of hydrate dissociation and that was analyzed firstly in macroscopic experimental investigation. It was found that the fluctuation and dissipation of gas production in the near-equilibrium region can be used to predict the hydrate dissociation kinetics under non-equilibrium conditions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX