Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 202
Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (37), p.21094-21100
2021

Details

Autor(en) / Beteiligte
Titel
Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays
Ist Teil von
  • Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (37), p.21094-21100
Ort / Verlag
Cambridge: Royal Society of Chemistry
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The intrinsically sluggish kinetics of the anodic oxygen evolution reaction (OER) is deemed to be the bottleneck for highly efficient electrocatalytic hydrogen production, and the by-product is less value-added oxygen. Herein, we report rational construction of Mo doped Co4N nanoarrays (Mo-Co4N) with an open skeleton structure as a robust bifunctional electrocatalyst for concurrent electrolytic high-purity hydrogen and value-added formate productions in the cathodic and anodic process. Benefitting from Mo doping, the unique structure characteristics of more exposed active sites, and optimized electronic synergy, Mo-Co4N exhibits intriguing hydrogen evolution reaction (HER) activity with an exceptionally small overpotential of 45 mV at 10 mA cm−2 and a low Tafel slope of 42 mV dec−1. Meanwhile, when the anodic partial methanol oxidation reaction (MOR) is used to replace the OER, the oxidation potential is significantly reduced to 1.356 V at 10 mA cm−2. In particular, a two-electrode electrolyzer employing Mo-Co4N as a bifunctional catalyst only requires an ultralow cell voltage of 1.427 V to achieve a current density of 10 mA cm−2, featuring low energy consumption in comparison to traditional overall water splitting. Furthermore, high Faraday efficiencies approaching 100% for hydrogen evolution and value-added formate production are achieved, as well as excellent 60 h long-term durability.
Sprache
Englisch
Identifikatoren
ISSN: 2050-7488
eISSN: 2050-7496
DOI: 10.1039/d1ta05894k
Titel-ID: cdi_proquest_journals_2576908921

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX