Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 7157
Computers & graphics, 2021-08, Vol.98, p.293-305
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A framework for uncertainty-aware visual analytics of proteins
Ist Teil von
  • Computers & graphics, 2021-08, Vol.98, p.293-305
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Requirements for an uncertainty-aware visualization of proteins.•Uncertainty-aware description of a protein and its properties.•Uncertainty-aware visual analytics framework of protein structures and their properties. [Display omitted] Due to the limitations of existing experimental methods for capturing stereochemical molecular data, there usually is an inherent level of uncertainty present in models describing the conformation of macromolecules. This uncertainty can originate from various sources and can have a significant effect on algorithms and decisions based upon such models. Incorporating uncertainty in state-of-the-art visualization approaches for molecular data is an important issue to ensure that scientists analyzing the data are aware of the inherent uncertainty present in the representation of the molecular data. In this work, we introduce a framework that allows biochemists to explore molecular data in a familiar environment while including uncertainty information within the visualizations. Our framework is based on an anisotropic description of proteins that can be propagated along with required computations, providing multiple views that extend prominent visualization approaches to visually encode uncertainty of atom positions, allowing interactive exploration. We show the effectiveness of our approach by applying it to multiple real-world datasets and gathering user feedback.
Sprache
Englisch
Identifikatoren
ISSN: 0097-8493
eISSN: 1873-7684
DOI: 10.1016/j.cag.2021.05.011
Titel-ID: cdi_proquest_journals_2575099908

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX