Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A 3D LBM-DEM study of sheared particle suspensions under the influence of temperature-dependent viscosity
Ist Teil von
Powder technology, 2021-09, Vol.390, p.143-158
Ort / Verlag
Lausanne: Elsevier B.V
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Particle suspensions form a fundamental yet complex component of many scientific and engineering endeavours. This paper proposes a numerical coupling between the lattice Boltzmann and discrete element methods that resolves particle suspensions exposed to thermal influences due to temperature-dependent fluid viscosity and conjugate heat transfer between components. Validation of the model was performed via the study of the relative viscosity of suspensions. This numerically corroborated the proposed temperature-dependence of the relative viscosity of suspensions. The model was finally used to interrogate the macroscopic behaviour of sheared suspensions at a range of solid volume fractions. This demonstrated changes in suspension flow behaviour due to temperature related effects. Future work based on these results would examine how particle properties could be modified to exacerbate and control temperature-based phenomena potentially leading to improvements in domains such as industrial material processing and manufacture.
[Display omitted]
•Study on impact of temperature-dependent viscosity fluid on sheared suspensions.•Fully resolved 3D particle transport using coupled LBM-DEM approach.•Total energy LBM method used to resolve thermal effects for solid and fluid phases.•Supports experimental data of temperature-dependent suspension relative viscosity.