Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 60

Details

Autor(en) / Beteiligte
Titel
Soft and Self‐Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling
Ist Teil von
  • Advanced functional materials, 2021-09, Vol.31 (36), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • Urged by the increasing power and packing densities of integrated circuits and electronic devices, efficient dissipation of excess heat from hot spot to heat sink through thermal interface materials (TIMs) is a growing demand to maintain system reliability and performance. In recent years, graphene‐based TIMs received considerable interest due to the ultrahigh intrinsic thermal conductivity of graphene. However, the cooling efficiency of such TIMs is still limited by some technical difficulties, such as production‐induced defects of graphene, poor alignment of graphene in the matrix, and strong phonon scattering at graphene/graphene or graphene/matrix interfaces. In this study, a 120 µm‐thick freestanding film composed of vertically aligned, covalently bonded graphene nanowalls (GNWs) is grown by mesoplasma chemical vapor deposition. After filling GNWs with silicone, the fabricated adhesive TIMs exhibit a high through‐plane thermal conductivity of 20.4 W m−1 K−1 at a low graphene loading of 5.6 wt%. In the TIM performance test, the cooling efficiency of GNW‐based TIMs is ≈1.5 times higher than that of state‐of‐the‐art commercial TIMs. The TIMs achieve the desired balance between high through‐plane thermal conductivity and small bond line thickness, providing superior cooling performance for suppressing the degradation of luminous properties of high‐power light‐emitting diode chips. Graphene nanowalls, composed of high‐quality, vertically aligned, and covalently bonded graphene frameworks, exhibit excellent ability to improve the thermal conductivity of polymer‐based thermal interface materials. The resulting composites show a through‐plane thermal conductivity of 20.4 W m−1 K−1 at a filler content of 5.6 wt%, resulting in ≈1.5 times higher cooling efficiency compared to that of a commercial thermal pad.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX