Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 86
IOP conference series. Materials Science and Engineering, 2016-01, Vol.105 (1), p.12039-12046
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Drop out Estimation Students based on the Study Period: Comparisonbetween Naïve Bayes and Support Vector Machines Algorithm Methods
Ist Teil von
  • IOP conference series. Materials Science and Engineering, 2016-01, Vol.105 (1), p.12039-12046
Ort / Verlag
Bristol: IOP Publishing
Erscheinungsjahr
2016
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Industrial Engineering is one of the departments in Faculty of Industrial Technology. It has more than 200 reshmen in every academic year. However, many students are dropped out because they couldn't complete their study in appropriate time. Variables that influence the drop out case are not yet studied. The objective of this paper is discovering the highest accuracy level between the two methods used, i.e. Naïve Bayesand Support Vector Machines algorithms. The method with the highest accuracy will be discovered from the patterns forms and parameters of every attribute which most influence the students' length of study period. The result shows that the highest accuracy method is Naïve Bayes Algorithm with accuracy degree of 80.67%. Discussion of this paper emphasizes on the variables that influence the students' study period.
Sprache
Englisch
Identifikatoren
ISSN: 1757-8981
eISSN: 1757-899X
DOI: 10.1088/1757-899X/105/1/012039
Titel-ID: cdi_proquest_journals_2565096064

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX