Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
This paper investigates the principles that regulate complex stereotomic constructions as a starting point for the design of a new two-dimensional floor structure based on the principles of TIM (Topological Interlocking Materials). These interlocking systems use an assembly of identical Platonic solids which, due to the mutual bearing between adjacent units and the presence of a global peripheral constraint, lock together to form pure geometric shapes. This type of structure offers several advantages such as a high energy dissipation capacity and tolerance towards localised failure, which has made it a popular research topic over the last 30 years. The current research project includes a case study of an assembly of interlocking cubes to create a “flat vault”. The resulting vault design features a striking appearance and its geometry may be manipulated to achieve different two-dimensional solutions, provided certain geometric conditions necessary for the stability of the system are followed.