Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 543
IEEE transactions on vehicular technology, 2021-07, Vol.70 (7), p.6750-6762
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Artificial Noise Assisted Secure Transmission for Uplink of Massive MIMO Systems
Ist Teil von
  • IEEE transactions on vehicular technology, 2021-07, Vol.70 (7), p.6750-6762
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2021
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • Secure downlink transmission in massive multiple-input multiple-output (MIMO) systems has sparked great research enthusiasm. However, the secrecy of uplink transmission is equally important although relatively less attention has been dedicated to. In this paper, we show that a multi-antenna eavesdropper could potentially reduce the secrecy rate of legitimate communications severely through channel estimation in the training phase and coherent detection in the payload data transmission phase. To safeguard uplink transmission, an artificial noise (AN)-assisted scheme is proposed. Specifically, the optimization problem that aims to optimize the power allocation between AN and data symbols in the sense of maximizing the secrecy rate is formulated. We investigate optimal power allocation strategies for two distinct cases. That is, the base station and the eavesdropper know the channel state information to the users, and the opposite case. In each case, we further consider whether the accurate position of the eavesdropper is known to the users. Due to the complexity of the cost function, a closed-form solution is intractable. As a result, the bisection method is employed to obtain the numerical results. The impacts of the non-idealities, including the channel estimation error and the uncertainty of eavesdropper's position, on the power allocation strategy are discussed. Finally, extensive simulations are carried out to validate our proposed algorithms.
Sprache
Englisch
Identifikatoren
ISSN: 0018-9545
eISSN: 1939-9359
DOI: 10.1109/TVT.2021.3081803
Titel-ID: cdi_proquest_journals_2553591333

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX