Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 629
Wireless communications and mobile computing, 2021, Vol.2021 (1)
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Trustworthy Image Fusion with Deep Learning for Wireless Applications
Ist Teil von
  • Wireless communications and mobile computing, 2021, Vol.2021 (1)
Ort / Verlag
Oxford: Hindawi
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • To fuse infrared and visible images in wireless applications, the extraction and transmission of characteristic information security is an important task. The fused image quality depends on the effectiveness of feature extraction and the transmission of image pair characteristics. However, most fusion approaches based on deep learning do not make effective use of the features for image fusion, which results in missing semantic content in the fused image. In this paper, a novel trustworthy image fusion method is proposed to address these issues, which applies convolutional neural networks for feature extraction and blockchain technology to protect sensitive information. The new method can effectively reduce the loss of feature information by making the output of the feature extraction network in each convolutional layer to be fed to the next layer along with the production of the previous layer, and in order to ensure the similarity between the fused image and the original image, the original input image feature map is used as the input of the reconstruction network in the image reconstruction network. Compared to other methods, the experimental results show that our proposed method can achieve better quality and satisfy human perception.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX