Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 204
Teaching statistics, 2021-07, Vol.43 (S1), p.S133-S142
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Introducing students to machine learning with decision trees using CODAP and Jupyter Notebooks
Ist Teil von
  • Teaching statistics, 2021-07, Vol.43 (S1), p.S133-S142
Ort / Verlag
Oxford: Wiley
Erscheinungsjahr
2021
Quelle
ERIC
Beschreibungen/Notizen
  • This paper reports on progress in the development of a teaching module on machine learning with decision trees for secondary‐school students, in which students use survey data about media use to predict who plays online games frequently. This context is familiar to students and provides a link between school and everyday experience. In this module, they use CODAP's “Arbor” plug‐in to manually build decision trees and understand how to systematically build trees based on data. Further on, the students use a menu‐based environment in a Jupyter Notebook to apply an algorithm that automatically generates decision trees and to evaluate and optimize the performance of these. Students acquire technical and conceptual skills but also reflect on personal and social aspects of the uses of algorithms from machine learning.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX