Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Exploiting Inductive Peaking for Enhancing the RSOA's Large-Signal Modulation Performance
Ist Teil von
Journal of lightwave technology, 2021-06, Vol.39 (11), p.3502-3510
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2021
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
This manuscript tackles the issue of circuit parasitics of reflective semiconductor optical amplifiers (RSOAs), which has been often identified as the main culprit for their relatively poor modulation performance. Building upon the findings related to the beneficial effect of inductive peaking (IP) in the case of small-signals and following the principle of photonic-electronic co-design, in this paper we extend our study and reveal that the same effect can be beneficial for large-signal modulation as well. By using multi-Gaussian probability distribution for analyzing the histograms of the sampled signal at the RSOA's output, we explore the evolution of the back-to-back <inline-formula><tex-math notation="LaTeX">{\bf Q}</tex-math></inline-formula>-factor under various operating conditions and benchmark the large-signal modulation performance of the IP enhanced RSOA against the one with parasitics excluded. The study confirms that the IP effect indeed provides enhancement of the <inline-formula><tex-math notation="LaTeX">{\bf Q}</tex-math></inline-formula>-factor especially in the case of low input optical powers and low to moderate current densities of bits 0 and 1. We reveal that, provided that the modulation depth is kept fixed, <inline-formula><tex-math notation="LaTeX">{\bf Q}</tex-math></inline-formula>-factor can be maximized by finding the optimum current corresponding to bit 0. The major and overall achievement of the IP implementation is the boost of the <inline-formula><tex-math notation="LaTeX">{\bf Q}</tex-math></inline-formula>-factor through simple modulation current engineering, breaking the limit for post-processing free high quality transmission (<inline-formula><tex-math notation="LaTeX">{\bf Q}\ {\geq 7}</tex-math></inline-formula>) for a broad range of bit-rates and seeding optical powers.