Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 339
IEEE transactions on green communications and networking, 2021-06, Vol.5 (2), p.750-764
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Deep-Green: A Dispersed Energy-Efficiency Computing Paradigm for Green Industrial IoT
Ist Teil von
  • IEEE transactions on green communications and networking, 2021-06, Vol.5 (2), p.750-764
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • The rapid development of the Industrial Internet of Things (IIoT) has led to the explosive growth of industrial control data. Cloud computing-based industrial control models cause vast energy consumption. Most existing solutions try to reduce the overall energy consumption by optimizing task scheduling and disregard how to reduce the load of computing and data transmission. On the other hand, due to the rigid architecture and limited capability of the edge computing platform, solutions based on edge computing urgently need to be deeply optimized in terms of data processing and energy efficiency. This paper proposes Deep-Green, which is a dispersed energy-efficient computing paradigm for the Industrial Internet of Things. The core idea of Deep-Green is to realize the joint optimization of computing and network resources by merging data transmission and data processing. Deep-Green provides a novel method of constructing an IIoT edge layer based on a dispersed computing platform. By using an energy-efficiency task scheduling algorithm, container service technology, and programmable protocol stack, the data processing service is dispatched from the cloud side to the on-site controller. Therefore, the data from manufacturing equipment can be processed while they are forwarded by the on-site industrial controller. The results of experiments show that Deep-Green can not only effectively reduce the computing load and communication overhead of the cloud-side server, but also simplify the network topology and the number of devices at the edge layer of the IIoT.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX