Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Low light image enhancement based on modified Retinex optimized by fractional order gradient descent with momentum RBF neural network
Ist Teil von
Multimedia tools and applications, 2021-05, Vol.80 (12), p.19057-19077
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2021
Quelle
SpringerLink
Beschreibungen/Notizen
To dynamically adjust the edge preservation and smoothness of low-light images, this paper proposed a fractional order gradient descent with momentum radial basis function neural network (FOGDMRBF) to optimizing Retinex.Its convergence is proved. In order to speed up the convergence process, an adaptive learning rate is used to adjust the training process reasonably. The results verify the theoretical results of the proposed algorithm such as its monotonicity and convergence. The descending curve of error values by FOGDM is more smoother than gradient descent and gradient descent with momentum method. The influence of regularization parameter is analyzed and compared. Compared with Dark Channel Prior, Histogram Equalization, Homomorphic Filtering and Multiple Exposure Fusion, the halo and noise generated are significantly reduced with higher Peak Signal-to-Noise Ratio and Structural Similarity Index.