Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 89
Fuel (Guildford), 2021-05, Vol.291, p.120169, Article 120169
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Numerical investigation of the autoignition of underexpanded methane jets
Ist Teil von
  • Fuel (Guildford), 2021-05, Vol.291, p.120169, Article 120169
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •CFD simulations of autoigniting underexpanded methane jets at high pressure.•Quantification of the effect of injection parameters on autoignition delay.•Derivation of a semi-empirical correlation and comparison with an Arrhenius model.•Effect of injection variations on autoignition location in physical space.•Jet characterization in terms of global Reynolds and local Damköhler numbers. This work constitutes a numerical investigation of the autoignition of underexpanded methane jets at high-pressure conditions. Injection pressures from 125 to 500bar, back pressures from 40 to 125bar, and pressure ratios between 2.5 and 10 have been targeted. The aim is to identify the effect of the main control variables of gas injection on the autoignition delay and location. To this end, Reynolds-Averaged Navier-Stokes simulations with the k-ωSST model have been carried out for five broad parametric variations. The computational domain represents a Constant Volume Cell with a prototype gas injector. A two-stage workflow enables proper thermodynamic treatment of the conservation equations with real-gas modeling, sufficient resolution for shock structures in the near nozzle area, detailed kinetics described by the San Diego mechanism and treatment of turbulence-chemistry interaction with elliptic Conditional Moment Closure model. The results are interpreted conceptually as an interplay of jet reactivity, effectively described by an exponential dependence on ambient temperature and a power law dependence on ambient pressure, and of jet aerodynamics, empirically described by a quadratic dependence on pressure ratio. Injection temperature is introduced by defining an appropriate characteristic system temperature and a correlation is constructed, whose predictions are juxtaposed against a modified Arrhenius model and measurements from independent experimental studies in literature. The effect of injection variations on ignition location in physical space is also examined.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX